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ABSTRACT

This review paper discusses the algorithmic approaches being taken to

the development of finite element mesh generators capable of

automatically discretizing general domains without the need for user

intervention. The paper demonstrates that because of the modeling

demands placed on a automatic mesh generator, all the approaches taken

to date produce _unstructured meshes. Consideration is also given to

both a priori and a posteriori mesh control devices for automatic mesh

generators as well as their integration with geometric modeling and

adaptive analysis procedures.

INTRODUCTION

The generation of finite element models has historically been one of

the drawbacks to the widespread use of the analysis technique. Over

the past fifteen years, code developers have addressed this deficiency

by producing stand alone finite element preprocessing systems for the

generation of finite element models. These systems typically employ a

number of mesh generation techniques in an interactive graphic

framework that allows the user to define the domain and mesh for the

problem at hand. During that same period of time, other developers

were constructing interactive graphics-based geometric modeling

systems. The early versions of these systems simply computerized the

standard drafting processes and were used almost exclusively for

making engineering drawings for the shop floor. It was quickly

realized that there is a large potential for directly employing the

information available in a geometric modeling system for a variety of
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applications such as machining and engineering analysis. However, the

early systems that simply computerized the drafting process did not

contain all the geometric information needed to allow applications to

operate automatically. Therefore, the more recent geometric modeling

systems, commonly referred to as solid modelers [1-3], employ complete

and unique geometric representations. These systems contain all the

geometric information needed to allow any geometrically controlled

operation to be automated.

Since the generation of a finite element mesh is a geometrically

controlled process, it is possible to automate the mesh generation

process when the geometry of the object is defined in a solid modeling

system. There are three reasons why such capabilities are not yet

commonly available. The first is the lack of mesh generators capable

of discretizing general domains without the need for extensive user

interaction to partition the domain into meshable regions. The second

is the lack of the geometric modeling support capabilities needed by

automatic mesh generators to interrogate and, for some algorithms, to

modify the geometric representation of the solid. These modeling

capabilities typically exist within the modeling system itself, but

are not available in a form that they can be easily separated from the

modeler and used by an applications procedure such as a mesh

generator. The third reason is the inability of finite element

analysis programs to automatically modify the finite element

discretization so that the analysis results yield a prescribed level

of accuracy. This necessitates the need for current users to specify

mesh control information to yield the type of element distribution

that, based on their knowledge and experience, should yield the

desired accuracy.

The purpose of this paper is to discuss the progress that has been

made in addressing these three needs. The majority of the paper is

devoted to the algorithmic approaches to automatic mesh generation

that are currently under development, and the techniques available to

control the distributions of elements throughout the domain of the

object. As discussed in the third section,the integration with
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geometric modeling systems is much more than the simple passing of

geometric information, it also includes the geometric modeling

functionality needed for the automatic mesh generators to operate.

Consideration is also given to the use of these procedures in adaptive

finite element analysis. Adaptive analysis procedures promise to

provide the analysis functionality needed to assess and control finite

element discretizations to provide the level of accuracy prescribed.

ALGORITHMIC APPROACHES TO AUTOMATIC MESH GENERATION

In recent

dominated

what are

generators

controlled

generator.

years, the generation of finite element meshes has been

by the application of mapped mesh generators that produce

commonly referred to as structured meshes. These mesh

[4-7] have the advantage of being able to produce well

meshes within the individual 'patches' passed to the mesh

They have the disadvantage of requiring the domain to be

meshed be partitioned into a set of mappable regions which will yield

the type of mesh control desired. Since the majority of finite element

models constructed in the past were produced independently of any

computerized geometric model, it was convenient to define the object

in a bottom-up fashion in terms of mappable mesh patches. However, the

complexity of reducing the complex three-dimensional domains available

from geometric modeling systems into a set of mappable regions has

lead to an increased interest in the development of mesh generators

capable of automatically meshing the entire domain. For the purpose of

this discussion, an automatic mesh generator is an algorithmic

procedure capable of producing a valid finite element mesh in a domain

of arbitrary complexity given no input past the computerized geometric

representation of the domain to be meshed.

Before discussing the specific algorithmic approaches to automatic

mesh generation, it is important to emphasize the fundamental

operational difference between mapped meshing procedures and the

automatic mesh generation techniques that have been considered to

date. When mapped mesh generators are used, the geometry of the object

is constructed by gluing together the individual, fixed topology,
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mesh patches. Therefore, the geometric representation is explicitly

defined in terms of those mesh patches. The mapping operators used to

define the mesh within each of the mesh patches employ, in either an

explicit or implicit form, a set geometric representation for each

mesh patch defined in terms of the information available on the

boundary of the mesh patch. The user is responsible for defining a

valid set of mesh patches, which implicitly define the geometric

representation and explicitly provide the geometry necessary for

meshing to occur. The mesh generators are, therefore, not concerned

with the actual geometry of the object. This is, however, not the case

for an automatic mesh generator which is given a complete geometric

representation of the domain of interest and is responsible for

decomposing, without a priori information of the shape of the domain,

it into a valid set of elements. Since an automatic mesh generator

must determine the limits of the domain to be meshed, the most

computationally intensive portion of these procedures are the carrying

out of geometric interrogations for this purpose. Since mapped mesh

generators need not carry out these interrogations, it is not

surprising to find they are much more computationally efficient,

however, at the expense of user productivity.

Another important difference between these two approaches is that all

of the current automatic mesh generators produce unstructured meshes

and are best suited to producing simplex element topologies. This

means triangular elements in two dimensions and tetrahedral elements

in three dimensions. Although a number of algorithm developers have

successfully implemented two-dimensional algorithms to produce

acceptable quadrilateral meshes, it is not likely that procedures to

create acceptable all hexahedronal meshes for general

three-dimensional domains will be easy to produce. (There is a simple

subdivision procedure to convert a tetrahedral mesh into an all

hexahedral mesh [8], but the shape of the elements tend not to be

satisfactory.) Although some effort is under way to develop all

hexahedral meshes automatically, there are good reasons to assume they

are not going to be overly successful. It is because hexahedral

elements are reasonably sensitive to element shape and any automatic
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mesh generator producing them is unlikely to be able to control the

shape adequately. The other possibility is to generate a mesh with a

mixture of element types with as many hexahedronal elements as

possible. However, the need to match the faces of elements to insure

inter-element continuity means that a number of element shapes would

have to be used including a pyramid element and that the percentage of

hexahedron that would be produced in general geometries may not be

high.

For some classes of problems analyzed by the finite element method,

the use of various polynomial order tetrahedron is considered quite

acceptable. However, in other problem classes, particularly stress

analysis, users have a strong bias against these elements. The major

reason for this concern is that the majority of tetrahedral elements

in analysis packages were linear displacement; and thus constant

stress, elements which are well known to perform poorly in these

classes of problems. Recently, due primarily to the push for the

availability of automatic mesh generators, code developers have been

adding higher order tetrahedron elements to their element libraries.

Although not yet heavily tested, initial experience indicates that the

use of second order tetrahedron elements in conjunction with automatic

mesh generators will provide a cost effective means of performing

stress analyses of general geometries. Additional development of

tetrahedronal element types will be needed to fully address the use of

these elements for other analysis classes. For example, the use of

displacement-based tetrahedral elements for incompressible problems

leads to the application of too many constraint equations often

yielding a severely over constrained system of equations.

The automatic mesh generating procedures considered in this section

are fully three-dimensional or the extension from the existing

two-dimensional procedure to a three-dimensional procedure appear

possible. Therefore, no attempt is made to provide a complete

bibliography of papers on automatic mesh generation, most of which are

two-dimensional. Instead effort is concentrated on those papers that

consider three-dimensional techniques, making reference to selective
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early papers that are relevant. For purposes of this discussion, the

algorithms that have been developed will be classified as being based

on one of the following algorithmic approaches;

i. point placement followed by triangulation,

2. removal of individual subdomains,

3. recursive subdivision of the domain, and

4. spatial decomposition followed by subdomain meshing.

Although specific automatic meshing algorithms may overlap two of the

approaches listed, or may be implemented in specific steps where

separate steps use different approaches to carry out the appropriate

operations, the above classification provides a reasonably fundamental

separation of algorithmic approaches.

Point Placement Followed by Domain Triangulation

In this approach, the generation of the element mesh is carried out in

two distinct steps. The first step is to place points throughout the

domain of interest in a manner such that during the second step, the

triangulation of the points into an element mesh, the desired mesh

gradations and representation of the domain is obtained. As done in

the early survey on mesh generation [9], any mesh generation process

can be viewed as carrying out these two steps. However, this

subsection is only concerned with algorithmic approaches that contain

them as two distinct operational steps.

The first attempts to develop mesh generation procedures using these

approaches concentrated on the automation of the second step on

two-dimension domains [10]. Even in today's three dimensional

procedures [ii], this is the better understood of the two steps. The

early two-dimensional procedures [10,12] employed ad'hoc rules to

determine how to connect points together to create triangular

elements. A properly constructed set of rules is capable of producing

a well controlled mesh within a set of points, but the majority of the

early procedures required extensive searching and a large number of
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checks, many more than needed in an optimal triangulation algorithm.

In addition, it was difficult to develop a set of triangulation rules

that would insure the elements generated satisfy a given shape

criteria. This would indicate that the extension to three-dimensions

could be difficult and likely to be computationally intensive. One

three-dimensional rule-based procedure [13], which is an extension of

the point surrounding concept presented in [10], has been developed.

In this approach, the concept of surrounding a given point with

triangular elements is replaced with surrounding a line between two

points with elements and then to move on to another line until the

mesh is complete. Given a line connecting two points this procedure

will find a near-by point to form a triangular plane. This triangular

plane serves as a face of a tetrahedron of the first element which is

defined by another near-by point selected to complete it. One of the

two triangular faces of the tetrahedron that use that edge is selected

as the base triangle for the next tetrahedron. This process is

continued until the line is surrounded at which time a new line is

selected for surrounding.

Most of the recent effort in the development of procedures to produce

elements given a set of points employ the properties of the geometric

constructs of Dirichlet tessellation and, more importantly for mesh

generation, the dual Delaunay triangulation of a given set of node

points. Cavendish, et al. [ll] gives an interesting account of the

history of these procedures in the mathematics literature and their

more recent use for the purposes of finite element mesh generation.

The basic property of a Delaunay triangulation in two dimensions that

makes it appropriate for use in mesh generation is the resulting set

of triangles is as close to equilateral as possible [14]. More

specifically, the basic property of a Delaunay triangulation is that

there are no points inside the circum-circle defined by the three

corners of the triangles in two dimensions and no points inside the

circum-sphere defined by the four corners of the tetrahedron in three

dimensions. This distinction is of critical importance since this

property does correspond to well shaped, as compared to an equilate

triangle, elements in two dimensions, but does not insure well sha_
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elements in three dimensions, as compared to an equilateral

tetrahedron. As indicated below, this does have an important impact on

the development of a Delaunay based three-dimensional mesh generator.

There are a number of algorithmic approaches to the construction of a

Delaunay triangulation. A currently popular approach is a version of

an algorithm proposed by Watson [15] based on the property that in a

Delaunay triangulation there are no node points on the interior of the

circle defined by the three nodes of any of the triangles. The mesh

generation algorithm of Cavendish, et al. [ii] uses this property

directly by constructing the mesh by a node insertion procedure. Given

a Delaunay triangulation for a subset of the total set of nodes, one

of the remaining nodes is considered. The circum-circles of the

existing triangles are tested to see which contain the new node. These

triangles are flagged for deleting from the mesh (Fig. la) which

creates a unfilled polygon with a single internal node. It can be

shown that the Delaunay triangulation including the new node is simply

constructed by connecting all the vertices of the unfilled polygon to

the new node (Fig.lb) . This process is continued until the mesh is

complete.

It is important to note that the triangulation produced by a Delaunay

process represents the convex hull of the points used. This means

specific consideration must be given when the domain to be meshed in

not convex. This concern is easily addressed by rejecting elements

that are not within the domain of interest if the original set of

nodes are placed such that no element edges or faces are generated

that pierce the boundary of the domain. It is possible to do this by

the proper placement of points exterior to the domain when starting

the triangulation process [ll].

The development of algorithmic procedures for the placement of points

such that the desired mesh gradations are created, and poorly shaped

elements are not created because of poor point placement, is an

important part of using a Delaunay procedure for finite element mesh

generation. Cavendish [12] has presented a good two-dimensional scheme
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that spreads points based on node point density factors which are

specified in user defined regions. Another scheme for point placement

based on the primitives in constructive solid modeling has been

presented by Lee, et al. [16]. In this algorithm, the points are

uniformly placed in each of the two-dimensional primitives used in the

definition of the object. Since the shape of a primitive is well

understood, this is a simple task. After the primitives are combined

through the Boolean operations, a procedure to selectively eliminate

selected points in the portions of the domain that overlap is applied

to insure the creation of a mesh of the desired mesh density. Recently

Lo [17] proposed the use of a simple ray firing technique in which

points are placed along the rays when the ray is interior to the

object and places nodes at the points where the rays enter and exit

the domain. It is important to note that whatever technique is used to

place points, it should properly consider the boundary of the domain,

placing points so that the resulting finite element model properly

represents the domain of the object.

Although the basic concept of Delaunay triangulation is directly

extendible to three, and higher dimensional domains, its use for

automatic three-dimensional mesh generation requires special

consideration. This is because there is no guarantee that the

resulting elements will have a satisfactory shape in terms of the

ratio of volume to surface area. In fact it is possible to create zero

volume tetrahedron [11,18,19] within a three-dimensional Delaunay

triangulation. Dealing with the unacceptable element shapes, referred

to as slivers [11,18,19], requires special considerations, taking a

three-dimensional automatic meshing algorithm past that of basic

Delaunay procedure. As an example of a Delaunay-based

three-dimensional mesh generator that has considered these factors, a

brief summary of the one such procedure [18,19] is:

i. Define a bounding box for the domain of interest and fill

it with regular icosahedron following a specific procedure

[18,19].

2. Discard all points belonging to that set of icosahedron
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that fall outside the object to be meshed. The remaining

set of points are referred to as the preliminary nodes.

3. Use Watson's algorithm to construct a Delaunay

triangulation of the preliminary nodes. Since the

triangulation defines the convex hull of the points,

discard all tetrahedron whose centroid is outside the

domain of the object.

4. Eliminate the nodes, and associated tetrahedron, that are

used to define any of the element face triangles that lie

on the exterior of the triangulation produced in step

three. (The exterior triangles are those that are used by

only one element.)

5. Generate a set of nodes on the boundary of the original

object. This includes nodes at model vertices, along model

edges and on model faces.

6. Using watson's algorithm, insert these nodes into the

Delaunay triangulation. Again discard any tetrahedron whose

centroid falls outside the domain of the object.

7. Calculate the shape measure for all elements within the

triangulation. A good measure is the ratio of the radius of

the inscribed sphere to circumscribed sphere, normalized to

the ratio of a regular tetrahedron [19].

8. Collapse out the unacceptable surface tetrahedron, slivers,

that can be eliminated.

9. Apply the sliver removal procedures described in [19] to

eliminate all remaining sliver elements.

Mesh Generation Based on Sub-Domain Removal

Automatic mesh generation procedures in this group operate by removing

individual pieces from the domain one at a time until the domain is

reduced to one 'remaining acceptable piece. The majority of algorithms

based on this approach remove individual elements one at a time

[20-24] while others remove larger, but 'simple' portions of the

domain and then triangulate these individual pieces using a different

procedure [25-27].
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Sub-domain removal meshing procedures typically employ a boundary

representation of the domain and operate by searching for entities of

specific topological type that satisfy a set of connectivity and

geometric requirements. One of the set of entities that satisfy the

given requirements is used as the base entity for a geometric removal

operation that carves off

looking for and removing

domain remaining until it

Mesh generators based on

a portion of the domain. The process of

a new piece is then again applied to the

is reduced to a single acceptable piece.

this approach often employ a number of

operators, applied in a hierarchic manner, and attempt to consider the

influence of a current choice on future removal operation selections.

As an example, consider the two basic element removal operators used

by woo and Thomasa [21] to mesh three-dimensional domains without

voids. (A third operator is used if voids are present.) The first

operator, VERTEX_REMOVAL is applied by searching the object for

vertices with only three edges coming into it. Any such vertex that

satisfies a set of geometric interference requirements is then removed

from the object. The removal of a vertex carves a tetrahedron from the

object (Fig. 2a). In cases where all vertices have more that three

vertices, a second operator, EDGE REMOVAL, is applied. In this case, a

tetrahedron containing the selected edge is carved from the object

(Fig. 2b). Since this operation reduces the number of edges connected

to two of the vertices by one each, it eventually reduces the

complexity of the object until the first operator can be applied

again.

A topologically-based element by element removal procedure appears

ideally suited for the construction of optimal h-p finite element

meshes where coarse, exponentially graded meshes are desired [28,29].

A procedure under development for the generation of such meshes [24]

employs four meshing operators to produce meshes in simply connected

two-dimensional domains (Fig. 3). The first operator,

SINGULARITY_REMOVAL, is used to isolate the locations of all possible

singularities so that the proper set of elements can be placed around
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the singularity. The remaining operators, VERTEX_REMOVAL,

VERTEX_REMOVAL_WITH_EDGE SPLIT, and EDGE_REMOVAL, are used to mesh the

rest of the domain.

Since the amount of computation required for the application of each

removal operation is high, these procedures are not computationally

efficient for the creation of a fine mesh. However, the use of such

procedures to remove large pieces of the object which, can then be

quickly filled with with elements, can provide a computationally

efficient method to produce meshes to any level of fineness. An

example of such an approach is the algorithm of Joe and Simpson [26]

which first

regions, and

quasi-uniform

constructed.

reduces a two-dimensional domain into simply connected

then reduces these to convex polygons. An optimal

triangulation of each convex region can then be quickly

The development of an algorithm that decomposes the domain into large

chunks by removing them one at a time is an attractive way to consider

the automation of the current methods of mesh generation where the

user interactively decomposes the domain of interest into mappable

regions and invokes a mapped mesh generator. The difficulty in

developing such an approach is the identification and implementation

of a set of rules that would examine a geometry to determine how to

decompose it into mappable regions that will yield the type of mesh

gradations desired as well as providing a satisfactory mesh topology.

An example of such an approach for two-dimensional geometries is shown

in figure 4. This procedure (an unpublished prototype program by the

author) first invokes a set of 'rules' to identify the regions the

should, based on the mesh control information and the geometry, be

removed as a mappable region. It then applies another set of rules to

decompose the remaining domain into acceptable shaped regions to be

filled by a mapped mesh generator. (Only the second set of rules were

used on the example in figure 4.) The main complexity in the

development of such an approach is the development of a set of rules

that can 'look' at the computerized representation of the entire

geometry and decompose it in a manner simular to that a human produces
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when they look at the geometry on a screen. It is interesting to note

that in the development of the program used to generate the simple

example shown in figure 4, several finite modeling experts were given

example geometries and asked to define, without actually meshing them,

the mesh regions they would define to mesh a given set of geometries.

In most cases, they laid out substantially different regions. An

attempt is currently under way [27] to develop a three-dimensional

procedure taking a similar approach. The work is using the concepts of

primitive identification and feature recognition as applied to

geometric modeling based on constructive solid geometry (CSG) [1,2].

Mesh Generation by Recursive Subdivision

The recursive subdivision mesh generators [30,31] operate by the

repeated splitting of a domain into simplier parts until the

individual parts are single elements, or, possibly, simple regions in

which elements can be quickly generated. As in the sub-domain removal

procedures, this class of mesh generator typically operates off a

boundary representation of the domain to be meshed, looking for

candidate topological features meeting specific connectivity and

geometric requirements, selecting a specific splitting operation, and

updating the geometric and topological representations of the two

sub-domains created by the split.

A simplified description in the steps involved in the generation of a

three-dimensional finite element mesh by such an approach [30] is:

1. Reduce all the faces of the object to simply connected

faces by the introduction of splitting curves from interior

loops to the exterior loop. (Interior loops can connect to

other interior loops so long as one in the chain of

connected interior loops is then connected to the exterior

loop.)

2. Place node points along the various edges in the model in a

manner to reflect the mesh gradations desired.

Topologically this operation is equivalent to introducing
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vertices at various locations along edges and splitting the

edges into multiple edges at those vertices.

3. Triangulate each of the surface patches into a set of

surface triangles employing the nodes introduced in step 2.

The surface triangulation is carried out by the recursive

splitting of the face as follows;

* a split line is introduced between two nodes on the

boundary of the face that validly splits the face into

tWO,

* nodes are introduced along this split line based on the

nodal spacing of the edges that it runs between,

* the splitting of all sub-faces is continued until they are

all reduced to individual triangles.

4. Using the element edges introduced on the faces, determine

a splitting face that splits the object into two

sub-objects.

5. Mesh the splitting face using Step 3.

6. Repeat Steps 4 and 5 until each of the remaining subdomains

represents a single element.

Spatial Decomposition Followed by Subdomain Meshing

The basic idea behind these approaches is to use an efficient

procedure to decompose, in a controlled manner, the domain of interest

into a set of simple cells and to then mesh the individual cells in

such a manner that the resulting mesh is valid. The one spatial

decomposition approach that has been applied to mesh generation is the

quadtree in two-dimensions [32-35] and the octree in three-dimensions

[24,36-38]. In an octree representation, an object is represented as

the union if a set of disjoint cubes of various size which are

derived from the recursive subdivision of parent cubes into eight

octants. The entire structure is stored in a hierarchic tree [39,40].

Since the size of octree cubes desired for use in finite element mesh

generation are large with respect to the geometric details of the

object, it is necessary to deal in a specific manner with those octree

cubes that contain the boundary of the object and are neither fully
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inside nor outside the object.

One approach to building a three-dimensional mesh generator using this

basic tree representation is the finite octree, formerly

modified-octree, technique [24,36-38]. (The paper by Baehmann, et al.

[34], although limited to the two-dimensional finite quadtree,

formerly modified-quadtree, gives the most complete description of the

approach outlined below.) Since the proper representation of the

topological features that define the boundary of the object is

necessary to insure the validity of the mesh, the finite octree is

defined by the insertion of topological entities hierarchically from

the bottom. The vertices are first inserted into the tree being placed

in the proper sized octants. Next the edges are inserted, in discrete

form, into the proper sized octants. Edge insertion is carried out by

traversing the edge starting from its first vertex, which already

exist in its appropriate sized octant. The intersection where the edge

leaves that octant is found and associated with that discrete segment

as well as a pointer back to the original edge it came from. The

intersection location where it exited the first octant is the starting

point of the discrete segment of the second octant, the size of which

is controlled by the mesh control information applied to the edge. The

intersection where it exits that octant is found and the segment

stored. This process is continued until the edge's second vertex is

found. The faces of the object are then inserted in discrete form

using the existing edge information and the intersections of the sides

of octants with the surface patches making up the face. The definition

of the octants containing the boundary of the object, referred to as

cut octants, is completed by qualifying which side of the discrete

boundary existing in the octant is inside the object. This operation

requires a specific set of geometric checks. The interior octants

within the finite octree are then quickly filled by a simple tree

traversal process.

The finite element mesh is then generated within each of the octants

using the tree to pass octant face mesh information required to insure

a compatible mesh. The tetrahedronization scheme used for interior
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octants need only deal with a shape that is topologically a cube with

nodes at the corner and the possibility of mid-side and mid-face nodes

if the neighboring octants are one level finer as is allowed in the

mesh generator. The tetrahedronization of the boundary octants is more

complex in that it employs the above information plus the discrete

boundary information and specific geometric interrogations of the

original description of those entities when needed. A nodal

repositioning procedure to improve the shapes of the elements can also

be invoked. Figure 5 shows an example mesh generated with this

procedure.

Speed of Automatic Mesh Generators

The limited experience available to date indicates that the amount of

computation needed to generate a mesh of a few thousand elements for a

general three-dimensional geometry will be of the same order of

magnitude as a linear analysis carried out on that system. Therefore,

the computational efficiency of these procedures is of critical

importance. The two measures of computational efficiency of importance

are the time required by the given algorithms to generate comparable

meshes and, even more importantly, the computational growth rate of

the mesh generator. Tests run to date on complex two-dimensional

geometries indicates that the implementation of various approaches

yields speed differences that vary by more that an order of magnitude.

(The test referred to are proprietary to the company that ran the test

and can not be presented here.)

The various algorithmic approaches also demonstrate different growth

rates. The approach with the greatest amount of theoretical results is

Delaunay triangulation which, in the two-dimensional case [41],

indicate an O(n log(log n)), where n is the number of points,

computational time as being possible. (In two-dimensions the number of

elements is of the same order as the number of nodes [42].)

Computational results of an implemented three-dimensional algorithm

gave O(n*,5/3) computer times [ii]. (In the three-dimensional case,

the number of elements can be from O(n) to O(n**2) [42]. However, it
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appears

O(n).)

that in most practical cases the number of elements will be

The best computational growth rate obtained thus far is linear, O(n),

[26,34]. Joe and Simpson carried out a detailed study of the

computational effort required for their two-dimensional algorithm and

demonstrated times that were linear and asymptotic with one of the

steps of the algorithm. The finite quadtree two-dimensional [34] and

finite octree three-dimensional mesh generators also demonstrates a

linear growth rate with the number of elements.

A Priori Control of Element Distributions

In addition to the ability to generate a valid mesh for any geometry,

automatic mesh generators must permit the types of mesh gradations

necessary to produce efficient finite element models. Ideally, the

mesh control devices available allow for the convenient specification

of both a priori and a posteriori mesh control information. A priori

mesh control devices are used to specify the distribution of elements

in the initial finite element model, while a posteriori mesh control

devices are used during an adaptive analysis process [43] to improve

the mesh as dictated by the results on the current mesh.

The devices available to control the distribution of elements

throughout the domain of an object is at least partly a function of

the mesh generation algorithm used. The ease with which particular

forms of mesh control can be exercised is a function of both the mesh

generation algorithm and its implementation.

Since the basic input to an automatic mesh generator is a geometric

representation, any a priori mesh control device must be tied to the

geometric representation. This means that a priori mesh control can

also be a function of the particular geometric modeling approach used.

For example, mesh control information could be tied to the individual

primitives used is a constructive solid geometry modeling system and

thus stored as attribute information tied to that primitive in the
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binary tree used to store the primitives and Boolean operations

carried out on them [1]. Although this may be a natural approach for

use with constructive solid geometries and mesh generators designed to

operate with such modelers [16], it is not general, and it most likely

does not provide the type of mesh control that users of a priori mesh

control devices would expect. A more general method to define mesh

control information is to tie this information to the model through

the topological entities in the boundary representation of the object.

This method has the advantage of allowing for convenient specification

of mesh gradations by assigning mesh control information to the

individual vertices, edges, faces and regions that make up the domain

to be meshed in such a manner that any type of mesh gradations that

are desired and can be handled by the mesh generator will be produced.

It is also a reasonably general approach since an object has a unique

boundary representation which can be produced from any of the

evaluated solid geometric modeling approaches [1,2,44,45]. In

addition, most of the geometric modeling systems provide the ability

to produce the boundary representation of the object no matter which

solid modeling approach is used.

Automatic mesh generators that operate by removal of individual

subdomains [20-26] and recursive subdivision [30,31] rely on boundary

information and are well suited to employ mesh control information

tied to the edges of the boundary. They are typically less suited for

mesh control information defined in terms of the faces and regions

that make up the domain of the object. However, it is possible with

the appropriate implementation considerations to reflect that type of

mesh control information in the mesh generation process.

The mesh control devices for automatic mesh generators that

triangulate a set of points in space [10-14,16] are used to control

the distribution of points in space. This has the advantage that any

spatially-based procedure to place points in space can be used to

control their distribution. The disadvantage is that, as indicated in

the previous section, good procedures to define points throughout

general three-dimensional domains are difficult to devise. It would be
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desirable to construct procedures that are able to do this by

specifying mesh control information to the various boundary entities

of the object.

Mesh generators based on spatial decomposition also have the advantage

of easily reflecting spatially-based mesh control so long as this

information can be defined in such a manner that the decomposition can

properly be reflected. The ease with which this can be carried out is

a strong function of particular decomposition algorithm and its

implementation. Since the finite quadtree [33,34] and finite octree

[36,37] operate by inserting the boundary entities of the object into

the tree following the hierarchy of topological entities, they are

well suited for the specification of boundary-based a priori mesh

control information [38]. Figure 6a shows a uniform finite quadtree

mesh for an object when all the mesh control parameters for the

vertices, edges and regions are the same, while Fig. 6b shows a mesh

for the same object by simply changing the values of the mesh control

parameters for some of the vertices and edges (Fig. 6c). Figure 7

shows two finite octree meshes for the same object with the only

difference in mesh control parameters being the values along one edge.

INTEGRATION OF AUTOMATIC MESH GENERATORS WITH GEOMETRIC MODELERS

AS indicated in the previous section, automatic mesh generators are

geometrically very demanding. In particular, they require a large

number of geometric interrogations; and, depending on the meshing

algorithm, a large number of geometric model modifications to operate.

Therefore, they are not well suited to a static interface with

geometric modeling systems in which all that is available to the mesh

generator from the geometric modeling system is an output file of the

geometric representation [46]. Assuming that a common format is used

for this file, this approach has the disadvantage of requiring all the

geometric modeling functionality needed by the mesh generator be

reproduced within the mesh generator. Assuming that this functionality

already exist within the geometric modeling system, which is typically

the case, the development of that capability in the mesh generator is
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a redundant effort that has to be repeated for each new geometry form

to which the mesh generator is interfaced.

An alternative approach is to employ a dynamic interface in which the

mesh generation algorithms can interact directly with a geometric

modeling system through a set of procedures, to be referred to as

geometric communication operators, that can perform specific geometric

interrogations and modifications. The definition of geometric

communication operators is being considered for geometrically-based

applications [47], as well as those needed specifically for mesh

generation [48]. One approach to effectively employing geometric

communication operators in a finite element modeling system is to have

the input information used directly by the finite element modeling

software be the topological description of the object. Topology

represents an abstraction that is independent of the specifics of the

geometric definition, but does contain the connectivity information

necessary to control finite element modeling software which operates

through a set of geometric communication operators. One topological

representation well suited to this application is Weiler's

non-manifold radial edge data structure [45]. A high level design of

such a system is contained in [49].

The discussion below assumes a dynamic interface between the automatic

mesh generators and the geometric modeling system. See reference [48]

for a more specific discussion of the geometric communication

operators needed to support the various automatic mesh generation

approaches.

The integration of an automatic mesh generator with a geometric

modeling system requires a substantially different set of geometric

communication operators than is needed for interactive finite element

model generation. The complexity of the interface of an automatic mesh

generator with a solid modeler is a function of the algorithmic

approach underlying the mesh generator. Mesh generation algorithms

that operate through geometric interrogation only require a simpler

set of geometric communication operators than needed by mesh
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generators that must both interrogate and modify the geometric

representation during the mesh generation process. In general, the

majority of computational effort required for automatic mesh

generation is spent in carrying out geometric communication

operations. Since geometric interrogations typically require much less

computation than geometric modifications, mesh generators requiring

geometric interrogation are typically more efficient, on a per element

basis.

Two of the four algorithmic approaches to automatic mesh generation

discussed above require geometric interrogation only. They are point

placement followed by triangulation, and spatial decomposition

followed by subdomain meshing. The other two, removal of individual

subdomains and recursive subdivision, require both geometric

interrogation and modification. To better see this differentiation,

consider the comparison of the interactions with a geometric

representation for both an element-by-element removal algorithm and

the finite octree approach. In the element-by-element removal process,

topological and geometric interrogations are used to look for a

candidate feature to be carved off; geometric interrogations are used

to see if that removal is valid; and finally the feature is removed.

Since the next element removal must consider the geometry as it stands

after the current element was removed, the geometric model must be

updated by the use of geometric modification operators to reflect this

removal. In contrast, the primary geometry-related task in the finite

octree mesh generator is to determine how the boundary of the object

interacts with the appropriate sized octants in the tree. This

information is obtained through geometric interrogation only by

intersecting the boundary entities of the object with the appropriate

boundary features of the octants. The only other geometric

communication operators needed for this and the rest of the meshing

process are the interrogation operators of point classification, the

conversion from parametric and real coordinates, and the conversion

from real to parametric coordinates.

Although the algorithmic approaches to automatic mesh generation ant
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the geometric modeling procedures are available, the sets of geometric

communication operators needed to properly integrate them are not

readily available. Since the vast majority of these operators

represent operations that the geometric modeler must already support,

there is no major technical hurdles to be overcome to provide this

functionality for finite element modeling.

ADAPTIVE ANALYSIS AND A POSTERIORI MESH CONTROL FOR AUTOMATIC MESH

GENERATORS

As the finite element technique becomes more heavily used by designers

who do not possess extensive expertise in numerical analysis, there is

not only a need to improve the speed and robustness of the model

generation procedures, but a need to insure that the analysis results

produced are of sufficient accuracy to be meaningful. As in the case

of the model generation process, increasing the robustness of the

analysis to produce a prespecified degree of accuracy is best obtained

through the development of automated procedures for that purpose. This

is the goal of efforts on the development of adaptive finite element

analysis procedures.

In an adaptive finite element analysis procedure, the solution results

on a given mesh, in combination with a knowledge of that mesh, are

used to both estimate the accuracy of that solution as well as how to

best improve the mesh to efficiently obtain the level of accuracy

desired. The major components of such a system include;

1. finite element equation formulation and evaluation

algorithms,

2. a posteriori error estimation techniques to estimate the

discretization errors in the current solution,

3. error indication, or alternatively, correction indication

to determine where and, in the ideal case, how to improve

the finite element discretization, and

4. mesh improvement schemes to improve the finite element

discretization as indicated by the error or correction
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indicators.

Since adaptive finite element analysis employs a feedback procedure

which requires a number of solutions to sets of related finite element

equations, the techniques used for each of the component portions of

the system must be able to operate in an efficient manner. In addition

to being able to efficiently solve related sets of finite element

equations, the development of these systems must consider the most

appropriate mesh generation and update procedures to be used with the

various adaptive analysis approaches. Since this paper is primarily

concerned with the automatic generation and control of finite element

meshes, this section is concerned with the use of various automatic

mesh generators and mesh update procedures appropriate for use with

them. It first introduces some of the basic concepts and terminology

of a posteriori error estimation to place the remainder of the section

into context. The reader interested in more detail on error

estimation, as well as the efficient solution of the evolving sets of

algebraic equations arising in such systems, should begin by

consulting [43] and the appropriate references sighted in the

remainder of this section.

Overview of A Posteriori Error Estimation

A critical aspect of an adaptive analysis process is the estimation of

the discretization errors present in a given solution as well as

determination of how to most efficiently improve the finite element

model to obtain the level of accuracy desired. Since a priori finite

element error estimates can only indicate the convergence rate [50],

useful error estimates must employ a posteriori techniques which use

the analysis results to estimate the overall discretization error in

one or more solution norms. The concepts and techniques used to

calculate a posteriori error estimates and to determine how to most

efficiently improve a finite element discretization have begun to

mature since the early pioneering works of Babuska and his co-workers

(see [51-53] for example).
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Investigators in the area of adaptive finite element techniques

[43,54] agree that the primary function of a useful a posteriori error

estimator, E, is to provide a convergent and accurate measure of the

discretization error, e, of a given finite element solution. The

commonly used measure of the accuracy of an error estimator is the

effectivity index, e, which is defined for the jth mesh in a

convergent sequence of meshes, K, as:

llEill

®(kj) =

llu-ujll (i)

where u is the exact solution and uj is the finite element solution on

mesh j. One required property of a useful a posteriori error

estimator is

i®(kj) - 1.0 I _ 0 as j _ _ (2)

The practical measurement of the usefulness of an a posteriori

estimator is to apply it to a set of problems with known solutions

(either analytic or very accurate numerical solution) and to calculate

the effectivity indices for a sequence of adaptively refined meshes.

In addition to the necessary requirement that the effectivity index

for an a posteriori error estimator be close to one, there are two

additional desirable properties. The first is that the computations

of the error estimate, E, be an accurate approximate to the true

error, e, on as local a basis as pointwise evaluations. This allows

the estimate to be used to measure errors in any of a number of norms

as opposed to only integrated norms. The second property is that the

estimates, both local and global, be inexpensive to evaluate relative

to the effort required to calculate the finite element solution. These

two properties tend to work against each other. Estimates that are

computationally efficient, with a computational cost on the order of

n, where n is the number of unknowns in the finite element model, are

often accurate only for specific global norms defined in terms of

integrals over domain. On the other hand expensive estimates that

require the same order of computation as the original solution
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(typically O(n=), 1.5 _ =

estimates for any norm.

2) are more likely to give useful

To demonstrate some of the basic concepts of error estimation consider

a model elliptic [55] problem defined in two dimensions as

-VaVu + bu a - B
Bx

Bu - Bu + bu =
(a --_I _By (a -_-)

f(x,y), (x,y) c R

(3a)

subject to

u(x,y) = 0 (x,y) z BR 1 (3b)

Bu
B--6 = q (x,y) e BR2 (3c)

BR - BR 1 U BR 2

where

g is a bounded region in R 2

BR is the boundary of g

is the unit outward normal to BR

a(x,y), b(x,y) and f(x,y) are given functions meeting the necessary

smoothness criteria subject to a(x,y)>0 and b(x,y)_0 ¥(x,y)¢R

The weak form of solution to this problem is to find ucH 1 such that

¥ vcH_ (4a)
A(u,v) = (f,v) + <q,v>B_ 2

where

and
o

BR 1 . Recall

A(u,v) = [R[aVu. Vv + buy]dR

(f,v) = [g fv dR

S

<q,v>BR 2 _BR2 qv ds

(4b)

(4c)

(4d)

H1 is the set of all functions contained in H1 which are zero on

that the space HI contains all functions for which the
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function and its first partials are square integrable over the domain.

where the

polynominals

the domain

maintained.

out over the individual finite elements, R

A finite element approximation, UzStCH 1 to u is obtained by solving

A(U,V) = (f,V) + <q,V>sQ 2 _ V¢St (5)

basis function selected for U and V are piecewise

defined over individual elements of the triangulation of

such that C° inter-element continuity [50,56] is

This allows the integrals in equation (5) to be carried

and then properly summed.
i'

After the system

approximation, E,

approximate norm.

U + e in equation (4) yielding

is solved for U, the goal to obtain a useful

to the actual error, e - u - U, measured in an

The most direct means to do this is to replace u by

and to

EsSt*cH1, to yield the error estimate

A(e,v) - (f,v) + <q,v>%R 2 - A(U,v) V vcH_ (6)

replace e and v by piecewise polynomial basis functions,

* * *

A(E,V ) - (f,V) + <q,V >_R2

* * *

- A(u,V ) _ V 8S t

(7)

It is

S
t

St in which case

A(E,V

can not be just any set within H 1 . For example, assume that

important to note that the space spanned by the basis function
,

S t -

) + <q,V >_R2- A(U,V ) - (f,V)

+ <q,V>sR 2 - A(U,V) ¥ V8S t

) = (f,V

(8)

which is zero by equation (5). To provide useful estimates of the
,

errors S t must be a richer space than S t . One possible choice is to

use polynomials of one order higher for St which is the approach

taken by a number of investigators including Babuska and Miller [57]
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who used piecewise biquadric functions for E and V* when the f

element solution, U and V employed bilinear functions. As stated in

equation (8), the computational effort required to solve the error

estimation equations is on the same order as the original finite

element analysis. To reduce this computational cost additional

approximations are necessary. For example, Adjerid and Flaherty

[58,59] employed nodal superconvergence by neglecting the errors at

the nodes relative to that within the element to reduce the solution

of the error equations to the solution of a number of local Dirichlet

problems associated with the nodes.

Another approach to the derivation of the error equation is to replace

u by U + e in the equation (3) substituting this into the weighted

residual form and applying the divergence theorem which yields the

elemental level error expression [55,60]

A(e,v)g - (f,v)_ + <q,v>_2i - A(U,v)_ + <au_ ,v>8_ ¥ vcH_

i i i i

(9)

A(u,v)g. - [Q.[aVuVv + buv]dg (9b)
1 1

- fv d_. (9c)
(f'v)_i [gi z

where

<aU_ ,v>_g; [Sgi au_v ds (9d)

_i is the domain of the element, 8_i is its boundary,

derivative of u on the element boundary.

u_ is the normal

A key to the application of (9a) is the evaluation of the third term

on the right hand side since it contains the only unknown, u_. A

possible approximation for measuring this term is to use the average

value obtained from the two elements sharing the boundary which, when
*

applied with a specific set of weight functions, V , yields
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A(E,V*)_.- (f,V
1

where U+_ and U-_

side of the edge.

* + _ V >* - A(U,V ) + 1/2 <a(U_ + U ),
)_i + <q,V >%_.z _'i _'i

V ¢S t

(i0)

denote the value of the normal derivatives on either

An alternative form of the elemental error equation can be obtained by

integrating the third term on the right hand side of equation (9) by

parts to give

+ <q,v>8
A(e'v)_ i = Ar(U'v)gi g2i

where the

weighted integral of the

element solution defined as

- <aU_ ,v>%_ i + <au_ ,v>sg i

¥ vcg_

(11a)

first term on the right hand side of equation (lla) is the

residual over the element of the finite

Ar(U,v)_" - [_. (V(aVU)v - buy + fv) dg _ vsH_
1 1

(llb)

Again, a key aspect of working with this form, referred to as the

residual form, of the error estimate is dealing with the last term on

the right hand side of equation (lla) which is a function of the

unknown solution u. A more appropriate method to account for this

term in the residual form of the error estimate is to combine it with

the other boundary terms in equation (lla) producing the

so called jump term, <&aU_,v>_.defined as
1

<&aU_ ,v>8_
<a(u_ - u_),v>8_ i, _i $ _2]

<(q - aU_),v>_g., 8_i ¢ B_2 )
1

(12)
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where

<a(u_ - U_, v>sQ" = _8_. a(u_ - U_) v ds
l 1

<(q - aUn),V>_" = ;SQ. (f - aU_) v ds
l 1

Thus the jump term represents a weighted integral of the difference

between the normal derivatives of the exact and finite element

solutions for those portions of the element boundary upon which the

normal derivatives have not been defined, and a weighted residual of

the difference between the prescribed normal derivatives and the

normal derivatives of the finite element solution on the portions of

the element boundary upon which the normal derivatives are prescribed.

This form leads to a natural selection for an approximation to the

jump term when an estimate to the error is to be obtained. Selecting

a set of weighting function, V , an approximation to the error is

obtained as

* )_. + <daU_,V > 8_. ¥ V 8S tA(E,V )g. - Ar(U,V* * * * *
1 1 1

(13a)

where

< aaU_,V >_o.
1

+

The term (U_

two elements.

- ' >_i

*

t<(q - aU_),V>_. , _I e _Q2
1

(13b)

- U_-) represents the jump in normal derivatives between

A number

various

outlined

equation

tends

of investigators [51,52,60-64] have used equation (13) with
* ,

selections of finite subspace(s), S t , for the functions, V ,

above. It is interesting to note that in the application of

(13) with linear or bilinear finite elements the jump term

to dominate the a posteriori error estimator. This observation
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has recently been confirmed by Babuska and Yu [62,63] who proved that

the discretization error for odd-order elements is primarily due to

the jump terms. They have also shown [62,63] that when even order

elements are used, the interior residual, Ar(U,V*) , dominates the

discretization error estimate. This allows one to neglect the jump

terms in these cases which means the error estimation process requires

only element integrals which can greatly reduce the programming

complexity of adaptive analysis procedures [64] by avoiding the need

to track and calculate the interelement boundary integrals.

Mesh Improvement in Adaptive Analysis

After an estimate to the total error is obtained, the next step is to

determine how to improve the finite element model such that the

desired level of accuracy is obtained. One method to do this is by the

uniform improvement of the entire mesh by either subdividing each

element into a number of new elements of the same type (h-refinement)

or increasing the polynomial order of all elements (p-refinement).

Although convergent, such an approach is unsatisfactory from the

viewpoint of computational efficiency. It also turns out to be

unsatisfactory for use with many of the error estimation procedures

since the accuracy of the estimate often depends on the mesh having a

near optimum mesh distribution. Therefore, it is important to devise a

means to improve the finite element discretization is an optimal, or

near optimal, manner.

One approach to

requested degree

generated during

straight forward

procedures calculate

generating a near optimum mesh that yields the

of accuracy is to directly employ the information

the error estimation process. This is a fairly

process since the majority of the error estimation

elemental level contributions to the overall

error estimate equations, equations (10) or (13) for example, and sum

them in an appropriate manner to obtain the global error estimate.

That is

E= " Z_i (14 )

-30-



where hi is the contribution from element i and is referred to an the
elemental error indicator, and the exponent = is set so that the

summation is proper, for example =12 if the error is measured in the

energy norm. A simple strategy to the development of a near optimal

mesh is to improve the discretization within individual elements when

_i_ _ maxj nj 0_i (15)

Although simple, such an approach develops meshes in which the _i's

are nearly equal in each element. It has been proven that the optimum

mesh for one dimensional elliptic problems is one in which the error

indicators are equal, in an asymptotic sense, for all elements [65].

It has also been demonstrated numerically that equilibrating the

error indicators in meshes in higher dimensions is a near optimal

strategy for elliptic problems. This property, although often used and

seemingly reasonable, is not likely to be optimal for parabolic or

hyperbolic problems where the influence of time must be considered.

If more that a single procedure for.mesh enrichment is available, such

as selecting between element subdivision or increasing the polynomial

order of selected elements for example, the error indicators h i can

not tell which would be more effective for a selected element.

Although the error indicators will properly dictate mesh improvement

in the asymptotic sense, they may not lead to the best selections in a

practical sense. For example, assume the mesh improvement is carried

out by adding higher order polynomial shape functions and that the

error existing in the solution is orthogonal to that new term. In this

case, the addition of that term will not reduce the solution error. To

address this, the concept of a correction indicator, 7i, has been

introduced [66]. The function of a correction indicator is to estimate

the amount of solution improvement that will be gained by the

application of a particular mesh enrichment procedure. By evaluating

several possibilities, one can select that which will yield the

greatest improvements. (It should be noted that most error indicators

are correction indicators for one particular enrichment method.) This

concept appears well suited for use with hierarchic mesh enrichment
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procedures [66].

Once the portions of the mesh requiring improvement are determined,

the finite element discretization in that area must be improved. There

are a number of techniques available to carry out these improvements

including;

i •

•

relocating the positions of nodes within a given finite

element mesh topology (r-refinement),

subdividing selected elements into smaller elements of the

same type (h-refinement),

3. increasing the polynomial

(p-refinement),

4. defining an entirely new

distribution of elements,

5. various combinations of

techniques.

order of selected elements

mesh topology with an improved

two or more of the above

Each approach has its advantages and disadvantages with the most

efficient approach being dependent of the class of equation being

solved, smoothness of the solution, dimension of the domain of the

solution, and the overall modeling and computing environment

available•

The earliest methods for adaptively improving finite element meshes

considered the positions of the node points of a given mesh as

unknowns in the energy functionality governing the system [67,68]• The

resulting minimization problem, with appropriate constraints to insure

the domain and mesh topology remained unaltered, was then solved to

provide both the positions of the nodes and the values of the primary

unknowns at those nodes• Although the use of this approach, coupled

with a standard minimization procedure for nonlinear merit function

and constraints, is not commonly used for the solution of elliptic

equations, r-refinement techniques based on more direct node moving

criteria are being successfully used for the solutions to nonlinear

parabolic and hyperbolic problems. In these cases, the original
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partial differential equations are reduced to a set of ordinary

differential equations (ODE's) in time by the introduction of the

finite element discretization into an appropriately defined functional

which has the amplitudes of the functions at the nodes and the

velocity of the nodal positions as unknowns [69]. The functionality

used contains a specific penalty term to insure the mesh remains

valid. These problem types require time marching, and in the nonlinear

case, iteration. Therefore, the extra computation required to

calculate improved positions for the nodes can be more than

compensated for by the fact that a much coarser overall mesh can be

used. In fact, it has been found [69] that very accurate results can

be obtained for some classes of problems by using r-refinement methods

on coarse meshes. A drawback of r-refinement methods is that since

these methods do not introduce new degrees of freedom into the system,

there is a limit on the solution accuracy possible which is dependent

of the number of elements and initial mesh topology. These methods

also require special care to maintain the validity and numerical

stability of meshes as the nodes move. The complexity of dealing with

the mesh validity and numerical stability increases drastically as one

increases the dimensionality of the problem.

One of the most commonly used methods to increase the numbers of

degrees of freedom in a finite element mesh is to introduce more

elements of the same type into the mesh. In a feedback procedure, this

is typically done by subdividing selected elements into a new set of

elements of the same type, thus decreasing the size of the elements in

that area. This approach is referred to as h-refinement because the

mesh improvements are carried out by reducing the size of elements

which is typically measures in terms of a length parameter h.

There are a number of methods possible to subdividing selected

elements into new ones, however, care must be exercised in the

selection and application of procedures. An important consideration is

the control of the shape of the element, particularly if several

levels of refinement are applied is which case a refinement procedure

that causes deterioration in element shapes can lead to elements with
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numerical conditioning problems. This concern leads to the use of

element bisection methods in which the subelements formed are similar

in shape to the parent element [70-73]. Figure 8 demonstrates the

application of element bisection of a single element in both a

quadrilateral and trianqular mesh. In each scheme, a subdivided

element is replaced by four subelements with nodes introduced at the

midpoint of each of the original element sides. If these new nodes lie

along the edge of an element that is not subdivided, such as nodes 7

and 8 in the quadrilateral mesh and node 6 in the triangular mesh,

constraint equations must be written to maintain the continuity

requirements along that edge. The handling of the constraints, as well

as the efficient solution of the sequence of meshes defined as the

process continues, can be addressed by the careful selection of data

structures and solution algorithms [35,71-75].

H-refinement procedures for triangles have been devised in which the

need for constraint equations are avoided [74-76]. This is done by

allowing elements neighboring subdivided elements to be split in a

manner that constraints are not needed to maintain continuity. This

splitting does reduce the shape quality of the element, however, it is

only applied for one level; and, in a temporary manner such that if

those elements are to be subdivided, the subdivision is applied to the

original element.

An advantage of

solution accuracy

selected elements

process is made

element elements

is a subset of

the p-refinement method is that improvements in

are obtained by increasing the polynomial order of

without the need. to alter the mesh topology. This

even more effective by the use of hierarchic finite

where the shape functions for an element of order p

those for the element of order p+l [61,66,77] which

means the stiffness equations for an enriched mesh can be efficiently

generated by simply adding new terms to the previous stiffness matrix.

It is also possible to employ these shape functions in a manner that

avoids the need to write constraint equations to maintain

inter-element continuity when elements of different polynomial orders

neighbor each other. Another benefit of p-refinement procedures is
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that the rate of convergence, in the energy norm when defined in terms

of the number of unknowns, is better in elliptic problems with

singularities [79,80]. For these reasons, these approaches are

receiving considerable attention in the adaptive analysis literature.

Another feedback approach to the development of improved finite

element meshes is to use the results on the current mesh to guide the

generation of an entirely new mesh. Simplistically, this approach

could be considered a combination of r- and h-refinement which need

not suffer from the basic restrictions of either. That is, it can be

structured to allow the equivalent of node movement, but without the

restrictions of maintaining a fixed mesh topology, and it allows the

number of elements to be increased without the need to consider

constraint equations. The two questions that must be addressed in the

application of such an approach are; the information to dictate the

element distributions and how a new mesh will be generated based on

that information. One approach that has been developed plotted

contours of a specific solution parameter that gave the analyst an

indication of how the mesh should be distributed and then allowed

him/her to then interactively generate a new mesh that followed those

contours [81]. A more recent approach defines a mesh density function

over the domain of interest that is then used by an automatic mesh

generator to generate a new mesh that has an appropriate element

distribution to efficiently calculate a solution of the required level

of accuracy [82].

In addition to the individual application of the above mesh enrichment

schemes, it is possible to apply them in various combinations. For

some classes of problems, the proper combination of two techniques

appears quite appropriate. The first is the combination of r- and

h-refinement techniques for the solution of parabolic or hyperbolic

equations. In these problem types, it is often possible to obtain

greatly improved solutions with only a given amount of mesh motion.

However, since r-refinement methods do not allow for an increase in

the number of unknowns, it may not be possible to obtain the required

degree of accuracy with them alone. Therefore, the addition of
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h-refinement where needed can supply the additional unknowns needed.

In the case of elliptic problems with singularities present, it has

been shown [28,29,80,83] that the proper combination of h- and

p-refinement can be an extremely efficient combination. In particular,

is has been shown that optimal hp-refinement procedures can give

exponential rates of convergence in the energy norm in terms of the

number of degrees of freedom.

Automatic Mesh Generators and A Posteriori Mesh Control

The various mesh enrichment Schemes indicated above can be combined

with automatic mesh generators to provide the mesh generation and

control needed for the development of automated finite element

analysis systems. One aspect of combining the mesh enrichment

procedure directly with the functionality of an automatic mesh

generator is that the mesh refinement can be carried out such that the

mesh's approximation to the domain being analyzed is improved as the

mesh is improved. For example, consider the use of h-refinement where

the boundaries of the domain are curved, but the initial, coarse mesh

consist of straight sided elements. If the element refinement is

carried out based on the element information only, the meshes

approximation to the boundary is never improved over that defined by

the initial mesh. However, if a close link back to the original

geometry is maintained through the mesh generator, the refinement

process can use the capabilities of the automatic mesh generator to

place new boundary nodes on the boundary of the object.

In general, there are specific combinations of algorithmic approaches

to automatic mesh generation and mesh refinement that are appropriate

for three-dimensional geometries. Mesh generation algorithms based on

Delaunay triangulation are well suited for use with h-refinement

schemes that avoid the need to apply constraint equations. This can be

done by using the error indicators to place additional points in those

portions of the mesh that are not fine enough. Then Watson's algorithm

[15] can be used to determine the affected elements to be removed,
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thus creating new elements using the added node inside the element.

Approaches of this type have been developed for two-dimensional

domains [84-85] in which minor alterations to the strict adherence to

a Delaunay mesh properties have been made. Since the basic Delaunay

mesh properties cause complications in the three-dimensional case,

similar modifications are likely.

The application of h-refinement in combination with mesh generators

based on spatial decomposition is an attractive combination since the

tree structure used to store the decomposition of the domain can be

used effectively in the adaptive process [35,38,76]. In this approach,

the mesh refinement would be carried out by the appropriate refinement

of the cells of the decomposition based on the values of the error

indicators of the elements inside the cell. Since the tree used to

define the spatial decomposition can maintain pointers back to the

geometric entities located within it [24,38,76], the enrichment of the

mesh in that cell can efficiently account for any geometry

approximation improvements. This is an important feature in the

three-dimensional case since the amount of computation required for

the mesh generation process is high and any localization of the

process possible leads to substantial computational savings.

Approaches have been developed that combine h-refinement and spatial

decomposition mesh generators that do [35] and do not [38,76] require

the application of constraint equations. In both cases, the tree

structure plays a critical role.

In the case where mesh refinement is carried out by cell bisection

only [35], it is necessary to apply constraints on the cell boundaries

when there is a level (cell size) difference. However, by the

appropriate use of the information in the tree structure, not only can

the need to apply constraints be quickly determined, but, with the

right combination of solution procedures, the finite element solution,

including constraints, can be efficiently calculated [35]. (Since an

adaptive analysis process requires a number of analyses, the

advantageous use of this tree structure to control the entire solution
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process can lead to substantial computational savings).

The need to apply constraint equations can be avoided by directly

employing all the features of the automatic mesh generator. For

example, procedures have been developed for the finite quadtree [34]

and finite octree mesh generators [24,37] that use the tree structure

to determine the cells that are affected by mesh refinement to re-mesh

only those cells, at their new levels, using the facilities of the

mesh generator [76]. This process is depicted graphically in Figure 9

for a finite quadtree example. The mesh before refinement is shown in

Fig. 9a, while Fig. 9b shows the area that is affected by the

refinement removed. The cells at their new levels are then defined,

Fig. 9c, and the mesh topology is created in those cells thus creating

the refined mesh shown in Fig. 9d. Figure 9d also demonstrated the

automatic improvement of geometry approximation gained by doing the

refinement through the functionality of the mesh generator. The

process is identical in the three-dimensional case. The same concepts

can be used to perform de-refinement in portions of the model where

the error indicators say the mesh is finer than needed. Such a

capability is particularly useful in time dependent problems where the

critical regions of the model change with time.

The generation of entirely new meshes based on the error indicators is

also possible with automatic mesh generators based on spatial

decomposition. In this case, all that is needed is information that

dictates the levels of the tree, and thus the cell sizes, for all the

cells. This process is in fact much the same as the local remeshing

procedures indicated above, except the entire mesh is redone instead

of refining and/or de-refining only portions of the model.

The use of automatic mesh generators for hp-refinement is another

possibility. Since the basic form of the mesh can be indicated in an a

priori manner based on the geometry and analysis attributes (loads,

material properties and boundary conditions) [24,28,29], the initial

mesh can be generated using the proper basic mesh topology. The

adaptive mesh updates then consists of only some minor mesh
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enhancements in local regions and increasing the polynomial order of

selected elements. As indicated previously, not all automatic meshing

approaches can produce the coarse exponentially graded meshes needed

for these cases. However, a properly constructed element removal mesh

generator can produce the meshes needed. This mesh generator would

generate the initial mesh [24] by first invoking an operator that

isolates and removes all singularities. The remaining operators then

create the coarsest possible mesh in the rest or the domain (see Fig.

3 for such an example). An initial analysis can be carried out and the

results used to determine the number of layers of elements needed

around the singularity [28]. These can then be easily inserted and

adaptive analysis using p-refinement continued.

CONCLUDING REMARKS

procedures needed

capability needed

element method in

discussed in this

finite element

This paper has reviewed the algorithmic approaches currently available

for the truly automatic generation of finite element meshes. Although

these approaches have been under consideration for a number of years

for two-dimensional domains, it is the recent efforts on

three-dimensional techniques, coupled with the geometric modeling

to support them, that is making them an important

to improve the general usefulness of the finite

engineering design. Mesh generators of the type

paper are beginning to become available to the

user community. By their nature, they will require

substantially more computational effort than other techniques.

However, the amount of user input required to use them will reduce the

amount of user time needed to generate a valid finite element mesh to

a small fraction of what is required using other techniques.

To be used most effectively, these mesh generation procedures must be

coupled with adaptive analysis procedures that can insure that the

final mesh yields the requested degree of accuracy. Without adaptive

analysis procedures based on reliable a posteriori error estimators,

the analyst will need to use a priori mesh control techniques to

generate the desired element distributions. However, more importantly,
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the analyst will not know if the results produced insure the desired

level of accuracy• Although adaptive techniques to completely control

errors in any norm of interest are not yet available, the currently

available techniques do represent an important capability that can be

effectively used to produce much more reliable finite element results.

Increasing the level of automation and reliability in the finite

element modeling process is necessary if finite element analysis is to

be a common part of engineering design• Ultimately, consideration need

be given to the complete automation of the finite element modeling

process•
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FIGURE CAPTIONS

I. Watson's Algorithm for inserting a point into a Delaunay

triangulation

2. Basic three-dimensional element removal operators

3. h-p mesh generated by element removal

4. Subdomain removal to decompose object into mappable regions

5. Finite octree mesh example

• Finite quadtree mesh control

a) uniform mesh

b) graded mesh

c) mesh control parameters for graded mesh

• Finite octree mesh control

a) uniform mesh

b) graded mesh

• h-refinement by element bisection

a) quadrilateral element

b) traingualar element

• Finite quadtree mesh refinement by local remeshing

a) initial mesh

b) affected portion of mesh removed

c) refined quadrants

d) resulting refined mesh
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a) vertex removal

b) edge removal

FIG. 2. Basic three-dimensional element removal operators

FIG. 3. h-p mesh generated b_" element removal
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FIG. 5, Finite octree mesh example
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a) uniform mesh b) graded mesh

D FIG.7. Finite octree mesh control
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riG. 8. h-refinement by element bisection
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initial mesh
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b) affected portion of mesh removed

c) refined quadrants d)

I
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FIG. 9.
Finite quadtree: mesh refinement by local remeshing
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